Customer Spotlight - Transfer Printing of Ordered Plasmonic Nanoparticles

Scientists from the the Dept of Biological Engineering at Utah State University have demonstrated for the first time, a high yield across a large area, an optical surface lattice resonance on glass substrates.

Nanopartz Nanorods in alignment

Overview

Transfer printing, the relocation of structures assembled on one surface to a different substrate by adjusting adhesive forces at the surface–substrate interface, is widely used to print electronic circuits on biological substrates like human skin and plant leaves. The fidelity of original structures must be preserved to maintain the functionality of transfer-printed circuits. This work developed new biocompatible methods to transfer a nanoscale square lattice of plasmon resonant nanoparticles from a lithographed surface onto leaf and glass substrates. The fidelity of the ordered nanoparticles was preserved across a large area in order to yield, for the first time, an optical surface lattice resonance on glass substrates. To effect the transfer, interfacial adhesion was adjusted by using laser induction of plasmons or unmounted adhesive. Optical and confocal laser scanning microscopy showed that submicron spacing of the square lattice was preserved in ≥90% of transfer-printed areas up to 4 mm2. Up to 90% of ordered nanoparticles were transferred, yielding a surface lattice resonance measured by transmission UV–vis spectroscopy.

Nanopartz' Role

Nanopartz provided gold nanorods that were used in this work.

Contact and Publication

Keith R. Berry Jr., Donald Keith Roper*, Michelle A. Dopp, and John Moore II, Transfer Printing of Ordered Plasmonic Nanoparticles at Hard and Soft Interfaces with Increased Fidelity and Biocompatibility Supports a Surface Lattice Resonance, Langmuir, Dec 28, 2023, https://doi.org/10.1021/acs.langmuir.3c02700

Nanopartz Products Used for this Research

The products used for this research are our Gold Nanorods.